COMMUNICATIONS

- [1] M. E. Davies, C. Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature **1988**, 331, 698,
- [2] L. B. McCusker, C. Baerlocher, E. Jahn, M. Bülow, Zeolites 1991, 11,
- [3] P. Behrens, Adv. Mater. 1993, 5, 127.
- [4] D. Antonelli, J. Ying, Curr. Opin. Coll. Interf. Sci. 1996, 1, 523.
- [5] K. R. Kloekstra, H. van Bekkum, J. Chem. Soc. Chem. Commun. 1995, 1005, and references therein.
- [6] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710.
- [7] C. G. Göltner, M. Antonietti, Adv. Mater. 1997, 9, 431.
- [8] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114,
- [9] A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science 1993, 261, 1299.
- [10] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
- [11] Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky, Nature 1994, 368, 317.
- [12] G. S. Attard, M. Edgar, J. W. Emsley, C. G. Göltner, MRS Symp. Proc. **1996**, 425, 185.
- [13] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature 1994, 368, 321.
- [14] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 1995, 269, 242.
- [15] S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem. 1996, 108, 1180; Angew. Chem. Int. Ed. Engl. 1996, 108, 1102.
- [16] G. S. Attard, J. C. Glyde, C. G. Göltner, Nature 1995, 378, 366.
- [17] G. S. Attard, M. Edgar, C. G. Göltner, Acta Mater. 1998, in press.
- [18] M. Antonietti, S. Förster, J. Hartmann, S. Oestreich, Macromolecules 1996, 29, 3800.
- [19] The polymers were supplied by the company Th. Goldschmidt AG.
- [20] The amphiphilic block copolymer (2 g) is dissolved in tetramethylorthosilicate (TMOS, 4 g), which is then hydrolyzed by adding dilute hydrochloric acid (pH 2, 2 g). Initially, an isotropic mixture is obtained. Methanol is removed by evaporation in vacuo (25 Torr, 30°C), upon which the reaction mixture turns viscous and birefringent. The subsequent sol-gel process is carried out at room temperature (50°C for SE 30/30) in an open flask. After 12 h the liquid crystalline mixtures are solid and, after extraction of a major portion of the template with acetone for 24 h, are calcined at 550°C (12 h under nitrogen, 12 h under oxygen).
- [21] a) K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscov, R. A. Pierotti, J. Rouguerol, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603; b) S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, and Porosity, Academic Press, London, 1982.
- [22] Interpenetrating Polymer Networks (Eds.: D. Klempner, L. H. Sperling, L. A. Utracki), Advances in Chemistry Series, ACS, Washington, DC, 1994, p. 239.
- [23] Biomineralization: Chemical and Biochemical Perspectives (Eds.: S. Mann, J. Webb, R. J. P. William), VCH, Weinheim, 1992.
- [24] The X-ray data were recorded on the EMBL beam line in Hamburg.
- [25] The X-ray data were fitted with Lorentzian functions. The normalized peak positions for the first three peaks are 1.00, 1.73, and 2.00, which indicates a hexagonal symmetry of the packing.

Why Does the Active Form of Galactose Oxidase Possess a Diamagnetic Ground State?**

Jochen Müller, Thomas Weyhermüller, Eckhard Bill, Peter Hildebrandt, Linda Ould-Moussa, Thorsten Glaser, and Karl Wieghardt*

Dedicated to Professor Gottfried Huttner on the occasion of his 60th birthday

The fungal enzyme galactose oxidase (GO) contains in its active site a square-pyramidally coordinated Cu^{II} ion (d⁹) with an O-bound tyrosyl radical (Tyr 272) in the equatorial plane (see Figure 1). This catalytically active copper(II)-tyrosyl radical form is EPR-silent and has been proposed to possess a diamagnetic ground state (S = 0).[1a] The unpaired electron in the $d_{v^2-v^2}$ magnetic orbital of the Cu^{II} ion is then intramolecularly antiferromagnetically coupled to the electron of in the half-occupied π orbital of the tyrosyl radical. This is somewhat surprising, because in all known Cu^{II}-semiquinonate complexes this intramolecular exchange coupling is ferromagnetic, yielding an S=1 ground state. [2] What is the mechanism of the exchange coupling in GO?

A catalytically inactive form of GO (pH = 4.5) containing a reduced Cu^{II}-tyrosinate moiety has been characterized by Xray crystallography (Figure 1).[3] It has been shown that the conformation of the coordinated Tyr 272 ligand is fixed by π stacking with the tryptophane residue Trp 290. It is assumed that one-electron oxidation of Tyr 272 yielding the coordinated tyrosyl ligand does not change the conformation of the phenyl ring or the Cu-O-C bond angle significantly.

Recently Tolman et al.^[4] and we^[5] have reported some low molecular weight, structurally characterized CuII-phenolate complexes that can be chemically or electrochemically oxidized to generate relatively stable Cu^{II}-phenoxyl species.^[6] These complexes are EPR-silent; they possess a diamagnetic (S=0) ground state.^[7] In these compounds the coordinated phenolate ligands are connected to the coordinated macrocycle 1,4,7-triazacyclononane (Figure 2); a six-membered chelate ring Cu^{II}NCCCO is formed. It is then natural to assume that the conformation of the chelate ring does not change upon one-electron oxidation of the phenolate to a coordinated phenoxyl.

A qualitative analysis of the relative orientations of the magnetic orbitals of the Cu^{II} ion $(d_{x^2-y^2})$ and of the phenoxyl radical (the half-occupied π orbital) reveals that they are strictly orthogonal at an Cu^{II}-O-C bond angle α of 180°, irrespective of the dihedral angle β between the x,y plane at the CuII ion and the phenyl ring of the radical ligand (Figure 3). According to the Goodenough-Kanamori rules

Max-Planck-Institut für Strahlenchemie

Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr (Germany)

Fax: +(49)208-306-3952

E-mail: wieghardt@mpi-muelheim.mpg.de

[**] We gratefully acknowledge financial support of this work from the Fonds der Chemischen Industrie. P. H. thanks the DFG for a Heisenberg-stipend.

^[*] Prof. Dr. K. Wieghardt, Dipl.-Chem. J. Müller, Dr. T. Weyhermüller, Dr. E. Bill, Dr. P. Hildebrandt, Dr. L. Ould-Moussa, Dipl.-Chem. T. Glaser

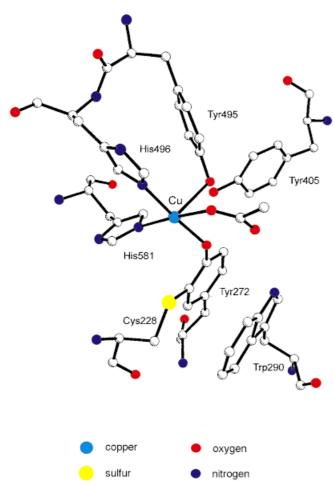


Figure 1. Schematic representation of the active site of galactose oxidase (pH=4.5), [3]

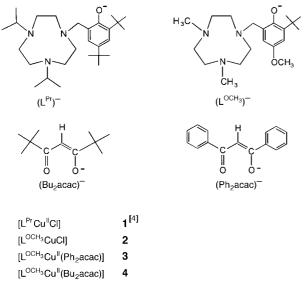


Figure 2. Ligands and complexes.

for exchange coupling a ferromagnetic coupling will then stabilize the triplet ground state (S=1). If the observed bond angle α is in the range $125-135^{\circ}$, the magnitude of the dihedral angle β determines the multiplicity of the electronic ground state: at $\beta=0^{\circ}$ the magnetic orbitals are again strictly

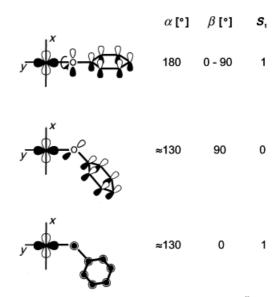


Figure 3. Relative orientations of the magnetic orbitals of the Cu^{II} ion $(d_{x^2-y^2})$ in the x,y plane relative to that of the half-occupied π orbital of the phenoxyl radical. α : Cu-O-C bond angle. β : dihedral angle between the x,y plane and the plane of the phenyl ring of the coordinated phenoxyl. S_t : expected electronic ground state.

orthogonal and S=1 is the ground state, but at $\beta \approx 90^\circ$ the significant overlap between the magnetic orbitals stabilizes a singlet ground state (S=0). In GO the bond angle α is about 129° and $\beta \approx 75^\circ$, which according to the above analysis results in an S=0 ground state—as is observed.

We were able experimentally to corroborate the above analysis as follows: We synthesized the mononuclear complexes **2**, **3**, and **4** (Figure 2) all of which contain the tetradentate macrocyclic anion (L^{OCH₃})⁻. Complex **2** is five-coordinate; its structure is proposed to be very similar to that of **1**, which has been analyzed by X-ray crystallography.^[4]

In **3** and **4** the chloro ligand is replaced by the didentate β -diketonates Ph₂acac⁻ and Bu₂acac⁻, which enforces the coordination number 6 at the Cu^{II} ions. Figure 4 displays the structure of **3**.^[8] The *cis*-Cu^{II}N₃O₃ polyhedron exhibits a marked tetragonal Jahn–Teller distortion: The Cu–N and Cu–O bond lengths of the N(2)-Cu(1)-O(2) axis (z axis) are both longer than the corresponding lengths in x and y direction. The unpaired electron occupies a $d_{x^2-y^2}$ metal orbital as in the square-pyramidal Cu^{II} ion in **2**. This has been corroborated by the EPR spectra of these Cu^{II} complexes.

Cyclic voltammograms of **2**, **3**, and **4** recorded in CH_2Cl_2 (20°C, 0.10 M [(nBu)₄N]PF₆) exhibit in the potential range from 0.2 to -1.2 V vs. ferrocenium/ferrocene (Fc+/Fc) one reversible one-electron oxidation ($E_{1/2}$ vs Fc+/Fc for **2**: -0.015 V; **3**: -0.33 V; **4**: -0.42 V). Figure 5 shows the UV/ Vis spectra of **4** and **2**, as well as their electrochemically one-electron oxidized forms [**4**] + and [**2**] +. The intense absorption maxima of [**4**] + at 391, 411, and 477 nm are characteristic of the phenoxyl radical. The resonance Raman (RR) spectrum of [**4**] + in CH_2Cl_2 (λ_{exc} = 413 nm) displays the typical strong C-O phenoxyl stretching mode at 1509 cm⁻¹ and a weaker C-C vibration at 1602 cm⁻¹. The energy difference Δ of 107 cm⁻¹ between these two modes conclusively demonstrates that the phenoxyl radical is O-bound to the Cu^{II} ion. [9]

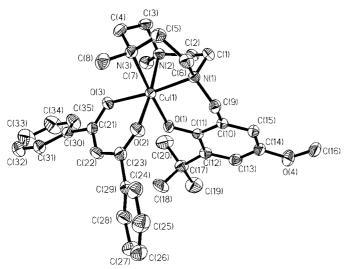


Figure 4. Structure of **3** in the crystal. Selected bond lengths [Å] and angles [°]: $Cu(1) - O(1) \ 1.914(2)$, $Cu(1) - O(2) \ 2.330(2)$, $Cu(1) - O(3) \ 1.994(2)$, $Cu(1) - N(1) \ 2.04782$), $Cu(1) - N(2) \ 2.333(2)$, $Cu(1) - N(3) \ 2.125(2)$, $O(1) - C(11) \ 1.325(3)$, $O(3) - C(21) \ 1.268(3)$, $O(2) - C(23) \ 1.243(3)$, C(21) - C(22), 1.392(4), $C(22) - C(23) \ 1.421(4)$; $Cu(1) - O(1) \ 176.9(1)$, $O(3) - Cu(1) - N(1) \ 173.7(1)$, $O(2) - Cu(1) - N(2) \ 172.0(1)$.

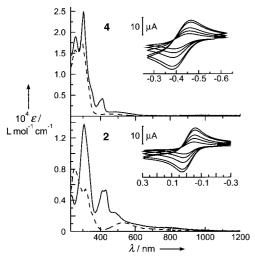


Figure 5. UV/Vis spectra (CH_2Cl_2) of **4** and **2** (broken lines) and of the electrochemically generated oxidized forms [**4**]⁺⁺ and [**2**]⁺⁺ (solid lines). The insets show the cyclic voltammograms of **4** and **2** in CH_2Cl_2 (0.10 M [$(nBu)_4N$]PF₆) at different scan rates ($50-500 \text{ mV s}^{-1}$).

This difference Δ is only 79 cm⁻¹ for the uncoordinated free 2,6-di-*tert*-butyl-4-methoxyphenoxyl radical. [10] Very similar UV/Vis and RR spectra have been obtained for the radical complexes [2] ⁺⁺ and [3] ⁺⁺. Compounds [2] ⁺⁺, [3] ⁺⁺, and [4] ⁺⁺ contain the same coordinated radical ligand (L^{OCH₃}) ⁺.

We then recorded the X-band EPR spectra of the electrochemically generated radical species [2] $^{++}$, [3] $^{++}$, and [4] $^{++}$ in frozen CH₂Cl₂ solution in the temperature range 4–60 K. Solutions of [2] $^{++}$ displayed no signal with the exception of a weak signal of 2 (<4%). This has also been reported by Tolman et al. [4] for [1] $^{++}$. We conclude that both [1] $^{++}$ and [2] $^{++}$ containing a five-coordinate Cu^{II} ion possess a diamagnetic ground state (S=0). In contrast, frozen solutions of [3] $^{++}$ and [4] $^{++}$ are EPR-active. Figure 6 shows the spectrum of [3] $^{++}$.

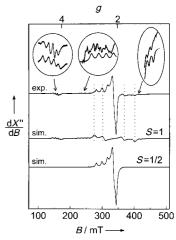


Figure 6. X-band EPR spectrum of electrochemically generated [3] $^{+}$ in CH₂Cl₂ (0.10 M [(nBu)₄N](PF₆)) at 16 K. Conditions: frequency 9.6463 GHz, 100.6 mW; modulation amplitude 19.7 G, modulation frequency 100 kHz. For details of the simulations see ref. [11]. In the enlarged parts of the spectra the upper line represents the experimental data and the lower line a simulation.

typical triplet spectrum with hyperfine structure is observed in addition to a weak signal at $g \approx 2.0$ due to a mononuclear $\mathrm{Cu^{II}}$ successor species (decomposition?). From the temperature dependence of the triplet spectrum a ferromagnetic coupling constant of $J = 16 \pm 3$ cm⁻¹ ($\mathscr{H} = -2JS_1S_2$; $S_1 = S_2 = ^{1}/_{2}$) was established. The spectrum of [4] *+ is similar, but the hyperfine structure was not resolved.

These spectroscopic results reveal that $[2]^{+}$ possesses an (S=0) ground state, whereas $[3]^{+}$ and $[4]^{+}$ have an (S=1) ground state, although in all three species the same radical ligand $(L^{OCH_3})^{+}$ is coordinated to a Cu^{II} ion.

A comparison of the bond angle α and the dihedral angle β in five-coordinate $\mathbf{1}^{[4]}$ with the corresponding angles in six-coordinate $\mathbf{3}$ shows that increasing the coordination number from 5 to 6 does not change α significantly (125.2° in $\mathbf{1}$ vs. 129.2° in $\mathbf{3}$), whereas β decreases by nearly 10° from 27.4° in $\mathbf{1}$ to 17.6° in $\mathbf{3}$. This structural change induces the change of the sign of the exchange coupling from antiferromagnetic in $[\mathbf{1}]$ and $[\mathbf{2}]$ to ferromagnetic in $[\mathbf{3}]$ and $[\mathbf{4}]$. This is in excellent qualitative agreement with the above analysis of the orientation of the magnetic orbitals (Figure 3).

Experimental Section

All new compounds yielded correct C, H, N analyses and mass spectra. The ligand $L^{\mathrm{OCH_3}}H$ as well as $Na(L^{\mathrm{OCH_3}})$ was synthesized according to published procedures. $^{[9]}$

- 2: To a solution of $Na(L^{OCH_3})$ (0.37 g, 1.0 mmol) in tetrahydrofuran/n-pentane mixture (30/10 mL) was added dehydrated $CuCl_2$ (0.134 g; 1.0 mmol). After stirring for 1 h at 20°C the volume of the reaction mixture was reduced by rotary evaporation to yield microcrystalline, violet 2; yield 0.21 g (47%).
- **3**: A solution of Na(L^{OCH₃}) (0.37 g, 1.0 mmol) and [Cu¹(NCCH₃)₄](BF₄) (0.32 g, 1.0 mmol) in dry CH₃OH (30 mL) was stirred at 20°C for 20 min in the presence of air. To the deep violet solution was added K[Ph₂acac] (0.26 g, 1.0 mmol). Within a few minutes a brown-green precipitate of **3** formed. Recrystallization from CH₂Cl₂/CH₃CN (1/1) afforded single crystals suitable for X-ray crystallography; yield 0.28 g (44%).
- **4**: A solution of $Na(L^{OCH_3})$ (0.37 g, 1.0 mmol) and Cu^ICl (0.099 g, 1.0 mmol) in dry CH_3OH (30 mL) was stirred in the presence of air for 20 min. To the

clear brown solution was added K[Bu₂acac] (0.22 g, 1.0 mmol), and stirring was continued for 10 min. Dropwise addition of H_2O (5 mL) and filtration initiated the precipitation of brown-green crystals of **4** within 5 h; yield 0.31 g (52%).

Physical data of complexes: UV/Vis (CH₂Cl₂): $\lambda_{\rm max}$ nm (ε [L mol⁻¹ cm⁻¹]): **2**: 252 (8.1 × 10³), 315 (5.3 × 10³), 532 (1.2 × 10³); **3**: 254 (2.71 × 10⁴), 334 (1.67 × 10⁴), 358 (1.60 × 10⁴); **4**: 256 (1.6 × 10⁴), 293 (1.8 × 10⁴), 451(500). [**2**] +: 236 (4.5 × 10³), 308 (1.4 × 10⁴), 413 (5.1 × 10³), 431 (5.2 × 10³), 485 (2.4 × 10³); [**3**] +: 270 (2.6 × 10⁴), 304 (2.4 × 10⁴), 352 (2.2 × 10⁴), 412 (6.1 × 10³); [**4**] +: 259 (1.9 × 10⁴), 303 (2.5 × 10⁴), 347sh (6.4 × 10³), 391 (3.2 × 10³), 411 (4.0 × 10³), 477(990).

The radical complexes [2]⁺⁺, [3]⁺⁺, and [4]⁺⁺ were generated in CH₂Cl₂ solution (0.10 M [(nBu)₄N]PF₆) by coulometry. X-Band EPR spectra (CH₂Cl₂, 10 K, 9.45 GHz): g_x , g_y , g_z ($A_x = A_y$, A_z [10⁻⁴ cm⁻¹]): 2: 2.05, 2.05, 2.24 (20, 180); 3: 2.05, 2.06, 2.26 (21.7, 176); 4: 2.06, 2.07, 2.25 (0, 175).

Received: September 12, 1997 [Z 10917 IE] German version: *Angew. Chem.* **1998**, *110*, 637 – 640

Keywords: bioinorganic chemistry • copper • oxidases • phenoxyl complexes • radical ions

- [1] a) J. W. Whittaker in Metalloenzymes Involving Amino Acid Residue and Related Radicals, Vol. 30 (Eds.: H. Sigel, A. Sigel), Marcel Dekker, New York, 1994, pp. 315-360; b) P. F. Knowles, N. Ito in Perspectives in Bio-inorganic Chemistry, Vol. 2 (Eds.: R. W. Hay, J. R. Dilworth, K. B. Nolan), Jai Press, London, 1993, pp. 207-244.
- [2] a) C. G. Pierpont, C. W. Lange, *Progr. Inorg. Chem.* **1994**, *41*, 331; b) C.
 Benelli, A. Dei, D. Gatteschi, L. Pardi, *Inorg. Chem.* **1990**, *29*, 3409.
 c) O. Kahn, R. Prins, J. Reedijk, J. S. Thompson, *ibid.* **1987**, *26*, 3557.
- [3] N. Ito, S. E. V. Phillips, C. Stevens, Z. B. Ogel, M. J. McPherson, J. N. Keen, K. D. S. Yadav, P. F. Knowles, *Nature* 1991, 350, 87; b) N. Ito, S. E. V. Phillips, C. Stevens, Z. B. Ogel, M. J. McPherson, J. N. Keen, K. D. S. Yadav, P. F. Knowles, *Faraday Discuss. Chem. Soc.* 1992, 93, 75; c) N. Ito, S. E. V. Phillips, K. D. S. Yadav, P. F. Knowles, *J. Mol. Biol.* 1994, 238, 794.
- [4] a) J. A. Halfen, Y. G. Young, Jr., W. B. Tolman, Angew. Chem. 1996, 108, 1832; Angew. Chem. Int. Ed. Engl. 1996, 35, 1687; b) J. A. Halfen, B. Jazdzewski, S. Mahapatra, L. M. Berrean, E. C. Wilkinson, L. Que, Jr., W. B. Tolman, J. Am. Chem. Soc. 1977, 119, 8217.
- [5] A. Sokolowski, H. Leutbecher, T. Weyhermüller, R. Schnepf, E. Bothe, E. Bill, P. Hildebrandt, K. Wieghardt, J. Biol. Inorg. Chem. 1997, 2, 444.
- [6] Other Cu^{II} phenoxyl complexes have been generated in solution: a) D. Zurita, I. Gautier-Luneau, S. Menage, J.-L. Pierre, E. Saint-Aman, J. Biol. Inorg. Chem. 1997, 2, 46; b) S. Itoh, S. Takayama, R. Arakawa, A. Furuta, M. Komatsu, A. Ishida, S. Takamuku, S. Fukuzumi, Inorg. Chem. 1997, 36, 1407.
- [7] The complex described in ref. [6a] is an exception. It has the phenoxyl radical in apical position of the Cu^{II} square pyramid. An (S=1) ground state has been proposed.
- [8] X-ray structure analysis of **3**: Brown-green crystal $(0.42\times0.60\times0.49~\rm nm)$; $C_{35}H_{45}CuN_3O_4$, $M_r=635.3$, monoclinic, space group $P2_1/c$, a=15.407(3), b=11.490(2), c=18.438(4) Å, $\beta=101.69(3)^\circ$, V=3196(1) Å³, Z=4 at 293(2) K; $\rho_{\rm calcd}=1.32~\rm g~cm^{-3}$; $\mu_{\rm Mo}=0.726~\rm mm^{-1}$, semiempirical absorption correction. Full-matrix least-squares refinement based on F with 6083 reflections with $[I>2\sigma(I)]$ and 388 variables, final R values: $R(F)=0.037~\rm and~wR(F)=0.091$. Intensities were measured on an Enraf-Nonius CAD-4 diffractometer. The crystallographic data were deposited as supplementary publication no. CCDC-100759 at the Cambridge Crystallographic Data Centre. Copies of the data are available from CCDC, 12 Union Road, GB-Cambridge CB2 1EZ (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
- [9] A. Sokolowski, J. Müller, T. Weyhermüller, R. Schnepf, P. Hildebrandt, K. Hildenbrand, E. Bothe, K. Wieghardt, J. Am. Chem. Soc. 1997, 119, 8889.
- [10] R. Schnepf, A. Sokolowski, J. Müller, V. Bachler, K. Wieghardt, P. Hildebrandt, J. Am. Chem. Soc., in press.

[11] In the first-derivative representation (dX"/dB) of the EPR spectrum (Figure 6) an apparently dominant signal of a Cu^{II} compound (S = 1/2)is detected; its intensity, however, represents only 10% of the doubly integrated total signal. In a broad field range the oxidation product [3] + displays typical resonances of a triplet spectrum with small zerofield splitting (D < $h\nu$) as is observed for spin pairs (S₁ = S₂ = $\frac{1}{2}$). $\Delta m = 1$ signals at g < 2 (350 – 430 mT) are clearly detected, as well as the typical half-field transitions with $\Delta m = 2$ at g = 4, which display a clearly resolved Cu hyperfine splitting (I=3/2). The spectrum was simulated with a spin Hamiltonian for an effective spin S=1 (strong coupling case) and parameters $D = 0.086 \text{ cm}^{-1}$, E/D = 0.13, g = (2.034, 2.021, 2.10) and $\mathbf{A} = (20, 20, 100) \times 10^{-4} \,\mathrm{cm}^{-1}$. For the local spin of the Cu^{II} ion $(S = \frac{1}{2})$ we obtained $a_{Cu} = (40, 40, 200) \times 10^{-4} \text{ cm}^{-1}, g_{Cu} =$ (2.07, 2.04, 2.20) by using the usual spin projection technique. These values are similar to those obtained for the CuII ion in 3. Since the signals are observed down to 4 K, the spin triplet is the ground state of [3] +, owing to an intramolecular ferromagnetic coupling. The splitting energy 2J between the triplet and (EPR-silent) singlet has been determined from the temperature dependence of the intensities(IT vs. T) by a fitting procedure to the Boltzmann function IT= const. $(1 + \exp(2J/kT)^{-1})$ in the temperature range 4–60 K. For I the peak-to-peak amplitudes of the measured derivative spectra at g = 4were used, because the resonances are not perturbed by signals of the CuII impurity.

Synthesis and Characterization of the First Double-Bridged Tetraselenafulvalenophanes**

Kazuo Takimiya, Akinobu Oharuda, Atsushi Morikami, Yoshio Aso, and Tetsuo Otsubo*

Since the discovery of the tetrathiafulvalene/tetracyano-pquinodimethane complex (TTF-TCNQ) as the first lowdimensional organic metal,[1] TTF derivatives with modified frameworks have been examined in order to develop yet more superior organic conductors.^[2] One of the basic modifications is dimerization of TTF, which makes it possible to prepare charge-transfer complexes of given stoichiometry.[3] To date, a variety of dimeric TTFs have been thus synthesized and characterized.^[4] Among them, tetrathiafulvalenophanes (TTF phanes) are of current interest, because in such sophisticated systems the two TTF units can adopt a unique sandwich structure and interact strongly with each other.^[5, 6] We have recently found that the double-layered TTF phanes 1 are especially good electron donors, forming highly conductive radical cation salts. The high conductivities are induced by strong intra- and intermolecular nonbonding interactions between the sulfur atoms incorporated in the TTF moieties.^[6] Since nonbonding interactions between selenium atoms are generally more effective than those of sulfur, tetraselenaful-

^[*] Prof. Dr. T. Otsubo, Dr. K. Takimiya, A. Oharuda, A. Morikami, Prof. Dr. Y. Aso Department of Applied Chemistry Faculty of Engineering, Hiroshima University Kagamiyama, Higashi-Hiroshima 739 (Japan) Fax: (+81)824-22-7191 E-mail: otsubo@ipc.hiroshima-u.ac.jp

^[**] This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.